Closing Fri, Jan 8: $\quad 10.1$
Closing Mon, Jan 11: 2.1
Closing Wed, Jan 13: 2.2
Closing Fri, Jan 15: $\quad 2.3$
Go to course website and read announcements and all postings. (review sheets, unit circle, etc...)

Today: Parametric and Ch. 2 Intro

Entry Task: (Uniform linear motion)
Consider $x=1+2 t, y=3 t$
(1) Plug in $t=-1$ to get an (x, y) point.

Do the same for $t=0,1$, and 2 .
(2) Plot these (x, y) points in the $x y$-plane and connect the dots.

\[

\]

Since $x=1+2 t$, we have $t=1 / 2(x-1)$. So $y=3 t=3 / 2(x-1)$ is the equation of the line's path.

Uniform Circular motion
Remember the fundamental connection between trig and circles:

If an object is traveling at a constant speed around a circle, then we first have to find θ before we can use the fact above.

Note: $\boldsymbol{\theta}=\mathbf{w t}+\boldsymbol{\theta}_{\mathbf{0}}$, where

$$
\begin{aligned}
& \theta_{0}=\text { the starting angle (radians) } \\
& w=\text { angular speed (rad/time) } \\
& t=\text { time }
\end{aligned}
$$

Example:
A bug runs along a circular path that is 7 inches in radius. It starts at the westmost edge and rotates counterclockwise at a constant 10 revolutions per minute. Give the equations for motion in terms of time t.

$$
\begin{array}{ll}
r=? ? & \\
\theta_{0}=? ? & \text { (give in radians) } \\
w=? ? & \text { (give in radians } / \mathrm{min} \text {) }
\end{array}
$$

Ch. 2 Limits and Derivatives

2.1 Motivation

The foundation of calculus is "limiting processes", where a procedure "approaches the exact answer" through better and better approximations.

Calculus is also primarily about "rates". It could be called the study of rates. Recall:
rate $=($ change in quantity)/(change in time)

Example: The distance traveled by an object is recorded at various times:

t (seconds)	0	1	2	3
Dist (meters)	0	1.2	4.5	10.4

1. What is the average velocity from

$$
t=1 \text { to } t=3 ?
$$

2. What is the average velocity from

$$
t=2 \text { to } t=3 ?
$$

3. What is the instantaneous velocity at $t=3$?
