Closing Fri, Jan 8: 10.1

Closing Mon, Jan 11: 2.1

Closing Wed, Jan 13: 2.2

Closing Fri, Jan 15: 2.3

Go to course website and read announcements and all postings. (review sheets, unit circle, etc...)

Today: Parametric and Ch. 2 Intro

Entry Task: (Uniform linear motion)

Consider x = 1 + 2t, y = 3t

- (1) Plug in t = -1 to get an (x,y) point. Do the same for t = 0, 1, and 2.
- (2) Plot these (x,y) points in the xy-plane and connect the dots.

t	x = 1 + 2t	y = 3t
-1	x = 1+2(-1) = -1	y = 3(-1) = -3
0	x = 1+2(0) = 1	y = 3(0) = 0
1	x = 1+2(1) = 3	y = 3(1) = 3
2	x = 1+2(2) = 5	y = 3(2) = 6

Since x = 1 + 2t, we have $t = \frac{1}{2}(x-1)$. So $y = 3t = \frac{3}{2}(x-1)$ is the equation of the line's path.

Uniform Circular motion

Remember the fundamental connection between trig and circles:

If an object is traveling at a constant speed around a circle, then we first have to find θ before we can use the fact above.

Note: $\theta = wt + \theta_0$, where $\theta_0 = the starting angle (radians)$ w = angular speed (rad/time) t = time

Example:

A bug runs along a circular path that is 7 inches in radius. It starts at the westmost edge and rotates counterclockwise at a constant 10 revolutions per minute. Give the equations for motion in terms of time *t*.

```
r = ??

\theta_0 = ?? (give in radians)

w = ?? (give in radians/min)
```

Ch. 2 Limits and Derivatives

2.1 Motivation

The foundation of calculus is "limiting processes", where a procedure "approaches the exact answer" through better and better approximations.

Calculus is also primarily about "rates". It could be called the study of rates. Recall:

rate = (change in quantity)/(change in time)

Example: The distance traveled by an object is recorded at various times:

t (seconds)	0	1	2	3
Dist (meters)	0	1.2	4.5	10.4

- What is the average velocity from t = 1 to t = 3?
- 2. What is the average velocity from t = 2 to t = 3?
- 3. What is the instantaneous velocity at t = 3?